The effects of free edge interaction-induced knotting on the buckling of monolayer graphene

نویسندگان

  • Hao-Yu Zhang
  • Jin-Wu Jiang
  • Tienchong Chang
  • Xingming Guo
  • Harold S. Park
چکیده

Edge effects play an important role for many properties of graphene. While most works have focused on the effects from isolated free edges, we present a novel knotting phenomenon induced by the interactions between a pair of free edges in graphene, and investigate its effect on the buckling of monolayer graphene. Upon compression, the buckling of graphene starts gradually in the form of two buckling waves from the warped edges. The collision of these two buckling waves results in the creation of a knot structure in graphene. The knot structure enables the buckled graphene to exhibit two unique post-buckling characteristics. First, it induces a five-fold increase in graphene’s mechanical stiffness during the buckling process. Second, the knotted structure enables graphene to exhibit a mechanically stable post-buckling regime over a large (3%) compressive strain regime, which is significantly larger than the critical buckling strain of about 0.5%. The combination of these two effects enables graphene to exhibit an unexpected post-buckling stability that has previously not been reported. We predict that numerical simulations or experiments should observe two distinct stress strain relations for the buckling of identical graphene samples, due to the characteristic randomness in the formation process of the knot structure. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excess energy and deformation along free edges of graphene nanoribbons

Change in the bonding environment at the free edges of graphene monolayer leads to excess edge energy and edge force, depending on the edge morphology zigzag or armchair . By using a reactive empirical bond-order potential and atomistic simulations, we show that the excess edge energy in free-standing graphene nanoribbons can be partially relaxed by both in-plane and out-of-plane deformation. T...

متن کامل

Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure

In this paper, we explore the linear response of one dimensionalquasiperiodic structure based on Fibonacci sequence composed of silicon dioxide,polystyrene and graphene materials. Here, a graphene monolayer is sandwichedbetween two adjacent layers. The numerical results are obtained by using the standardtransfer matrix method. Due to the presence of graphene sheet in eac...

متن کامل

Chirality-dependent buckling-driven wrinkles in graphene monolayer

It is of great significance to understand the underlying mechanism of buckling-driven wrinkles in graphene monolayer due to its applications in nanoelectromechanical systems (NEMS). In previous macroscopic studies based on continuum theory, the chirality-dependent buckling in graphene monolayer is considered as neglectable. However, we found that the growth of buckling-driven wrinkles in graphe...

متن کامل

Analytic Approach to Free Vibration and Buckling Analysis of Functionally Graded Beams with Edge Cracks using four Engineering Beam Theories

A complete investigation on the free vibration and stability analysis of beams made of functionally graded materials (FGMs) containing open edge cracks utilizing four beam theories, Euler-Bernoulli, Rayleigh, shear and Timoshenko, is performed in this research. It is assumed that the material properties vary along the beam thickness exponentially and the cracked beam is modeled as two segments ...

متن کامل

Buckling Analysis of Polar Orthotropic Circular and Annular Plates of Uniform and Linearly Varying Thickness with Different Edge Conditions

This paper investigates symmetrical buckling of orthotropic circular and annular plates of continuous variable thickness. Uniform compression loading is applied at the plate outer boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has different boundary conditions: clamped, simply and elastically restraint against rotation. The optimized Ritz method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016